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It is shown that there are two generalizations of some well-known analytically solvable prol
leading to exact analytical solutions of the Schrodinger equation for the ground state and a fe
lying excited states. In this paper, the ground state energies and wave functions are discusse
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In this paper, we investigate the bound states of the one-dimensional Schrodinge
tion

HY(X) = EW(X) (1)
with the Hamiltonian
__
H——@+V(x) . 2

Examples of potentials for which is the Schrodinger equafiparfalytically solvable
include the harmonic potential, some anharmonic potefittjlshe Morse poten-
tial*®12.13 the Kratzer potenti&t'415 the Rosen—Morse potenfidlthe Poschl-Teller
potential’, the Eckart potenti#, the Hulthen potenti&l, the Manning—Rosen poten
tial’°and some other cases (seg.ref1). In this paper, we investigate two genera

* The author to whom correspondence should be addressed.
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zations of these potentials for which the Schrodinger equatjoraf be solved analy-
tically. For the sake of simplicity, we investigate the ground state only.
In our earlier papéfwe used the expansion of the wave function in the form

Y= Z Gy (©)]
where
W9 = [fOI]" 9(%) - @)

Here,f(x) = f andg(x) = g are functions which are determined from the condition t
analytical solutions of the Schrédinger equation exist. There is a chance of fil
analytical solutions of the Schrddinger equation if the HamiltoHiaransforms the set
of the basis functiongy; into itself

Hy; = Z iy ®)
i

whereh; are numerical coefficients. Assuming linear independence of the fundtipr
we get from Egs1)—(5) a non-hermitian eigenvalue problem

Z ch; =Eg . ®6)

In general case, when the left eigenvectors {c} have the infinite number of non
zero components, the solution of the problénig difficult. On the other hand, if the
eigenvectorc has only a finite number of non-zero components, &qcgn be reduced
to a finite order problem and there is a chance to find analytical solutions.
Sufficient conditions which guarantee the propeSlycan be written in the fort

) - 3 e ¥
d?jx(x)=—g(x)§ g {00 ®
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and

V() =3 ViTfer ©

wheref;, g; andV, are numerical coefficients. The functift{r) appearing in Eq.9) can
be understood as a variable transformation from the anharmonic potential in the
ablex to the potential in a new variabig). If the coefficientd; andg; are known, the
functionsf andg can be obtained by inverting the functibn

1
= df
X0 = 540 (10

and calculating

900 =exp(-[ Y o f(9' ) . &Y

The matrixh appearing in Eq.6) has the forif

A = —M(M = 1)_2 fifijeat mZ (2 Gijoa — 1 i figed +

i i
+Z (fijng-9gy+V . 12
j

In this formulation, the problem of finding analytical solutions of the Schrodinger
ation (@) leads to the question when the eigenvalue prob&negn be reduced to the
problem of a finite order. For very low orders, we may be able to solve this pro
explicitly and find exact analytical solutions. For large orders, a numerical solutic
the eigenvalue problem may be necessary.

Significant advantage of our algebraic approach is its generality. We do not ac
any concrete form of the functidix) nor the values of the potential coefficieits
Changing the values of the coefficiefitswe can change the form of the functigx).
Further, changing the coefficient, we can change the form of the potenw&t) for
a given functionf(x). We see that such potentials are rather general and can be
adapted to experimental potentials than in the usual approaches.

First we summarize the standard approach, in which the funf{tprobeyes the
equation @dx = f,+ f, f + f, f2and the potentia¥/(x) is quadratic in the functiof) V =
Vo + V, f + V, f2 (section Standard Approach). Then, we investigate generalizatic
which a more general potentdl= Vy+ V, f+ V, f2+ ... +V,,, M with the same class
of functionsf(x) as above is assumed (section First Generalization). In the folloy
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section Second Generalization, we investigate another generalization in which
general function§(x) obeying the equationfidix = f,+ f, f + ... +fy fN are considered.
The solution of the problen®) is discussed in section Eigenvalue Problem. The gro
state energies and wave functions for general case are investigated in section (
State.

STANDARD APPROACH

The harmonic oscillator, the Morse, Kratzer, Rosen—Morse, Poschl-Teller, Eckart
then and Manning—Rosen oscillatdrs-16-2%re based on the equatiorife = fy + f, f +
f,f2andV =V, + V, f+ V, f? whereV, > 0. As is was shown previousfy the number
of potential constraints (conditions on the potentials coeffici¥))tequalsM — 1.
SinceM = 1 in this case, there are no potential constraints for such potentials a
analytic solutions belong to the same potential. In the examples given below, phy:s
insignificant integration constants are omitted.
Harmonic oscillator The most simple form of Eq7)is

df _

vl 1. @3
This equation wittfy= 1 leads to

f=x. 149

It gives the parabolic potentid = V, + V x + V,x2. ForV, =V, = 0 andV, = 1, the
harmonic oscillator is obtained.
Morse potential

df
& =a-—f (15)
Forf,= a andf, = -1, this equation gives

f=a-exp(—x) . (16)

For a = 1, the potentiaV = V, + V,f + V,f2is equivalent to the well-known Mors
potentiat®1213v = D[1 — exp (e(x — X,)/a)]>.
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Kratzer potential

=@ )

For f,= a2, f, = —2a andf, = 1, this equation gives
f=a-1x . 18

Forf =1 — 1k, the potentiaV =V, + V, f + V, f2is equivalent to the Kratzer potenttaf->
V = —-2D[alx — (@/x)?/2]. Forf = -1k, the one-dimensional Coulomb potentak V, f
is obtained.

Symmetric Rosen—Morse and Poschl-Teller potentials

p=af? 19

Forf,= a andf,= -1, this equation yields
f=Va tanh(Vax . (20

Fora= 1, the symmetric Rosen—Morse potentia V, tanh §)?is obtained®. Fora= -1,
we get the symmetric Poschl-Teller potedfid = V, tan)?. This potential can alsc
be obtained from the equatioffdk = i(1 —f?) leading tof = i tan ).

Some other known potentials more general equation

df - _
ot k(@+f)(b-1) (21
with fy = kab, f; = —k(a — b) andf, = -k leads to

f=[bxaexp(-k(a+b)X))/[1F exp(—k(a+hb)x)] . (22

Similarly, the equation

df - - -
= ka-no-1 (23
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with fy = kab, f; = —k(a + b) andf, = k gives

f=[bxaexp(-k(a-b)X)J/[1 £ exp(—k(a-b)x)] . (29

Depending on the values af b, k andV,, V;, V,, we can get the following poten
tials:

(i) The Rosen—Morse potentiéV = A tanh &) — B/cosh K)?for Eq. 1), a=-1,b=0,
k=2,Vy=-A, V, = 2A— 4B andV, = 4B.

(ii) The Eckart potentidfV = —-AZ/(1 —&) —B&/(1 —&)?, whereg = —exp k) for Eq. @3),
a=-1,b=0,k=1,V,=0,V,= -A-BandV, = -B.

(iii) The Hulthen potentidP1%v = —AZ/(1 —&), where€ = exp (x) for Eq. @1),a= 1,
b=0k=1,V,=0,V,=-AandV,= 0.

(iv) The Manning—Rosen potenfi&V = -A&/(1 —&) + BE%/(1 —&)?, whereg = exp ()
for Eq. 1), a=-1,b=0,k=-1,V,=0,V;=-AandV,=B.

FIRST GENERALIZATION

The most simple way of generalization of the examples given above is to take fuif}io
given in section Standard Approach and consider higher order potenfigds(M > 2).
It has one important consequence. According td%ethe eigenvalue probleng)(is
analytically solvable only iM — 1 potential constraints on the potential coefficiants
are introduced. Therefore, the analytical solution is not possible for all the pot
coefficients as in the standard case. Even more significant limitation is that the
tial constraints depend usually on the number of the functppimsthe linear combina-
tion (3). This means, that different states (the ground state, the first excitedesitjte
belong usually to different potential coefficientg. to different potentials. A few
examples is given below.

Anharmonic oscillatorsForM > 1, Eq. (3) gives the potentials of the anharmon
oscillatorsV = Vo + Vix + ... +V,, x*M. Examples of the analytic solutions for tt
anharmonic oscillators can be found for example in‘%eThe oscillators with the
potential depending om||can also be investigatéd

Generalized Morse potentiaFor M > 1, Eq. (5) leads to the generalized Mors
potentialV = Vo + V; f+ V, f2+ ... +V,, f?M, wheref = 1 — exp (%). For examples of
analytical solutions, see r&i.

Generalized Kratzer potentiaFor M > 1, Eq. (7) yields the generalized Kratze
potential vV = Vo + V, f + V, 2+ ... +V,, fM wheref = 1 — 1k. For examples of
analytical solutions, see réf.

Generalized symmetric Rosen—Morse potentadcording to our knowledge, the
generalized symmetric Rosen—Morse poteial Vy + V, f + V, f2+ ... +V,,, f?M with
the functionf given by Eq. 20) has not been investigated till now.
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Generalization of some other known potentigdscording to our knowledge, the
generalized Rosen—Morse, Eckart, Hulthen and Mannig—Rosen potetialg + V; f +
V, 2+ ... +V,, f with the functionf given by Eqs Z2) or (24) have not been inves
tigated till now.

SECOND GENERALIZATION

In this section, we consider a few examples of more general equations for the fu
f(x). We restrict ourselves to a few examples which can be of physical interest.
Potentials with fractional powsr The equation

g — (—1\k+1l(a — f\k —
dx_( D*¥*a-f)*, k=2,3, ... 5
leads to the solution
f=ax 1/[(k - DxHED (26)
Similarly, the equation
df _ ek _
dX—l/f , k=2,3,... e
has the solution
f=(-D*[(k+ )X D 29

Potentials with the fractional powers xfvere discussed also in &f.
Some more general potentialthe equation

%:qu (29

has the following implicit solution foN everf!

N/2-1

__2 2
X——N;)Pkcos

+1 2k+1
N

N/2-
2 .
T[+N|§)kam N (30)
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and forN odd

(N 32

(N-3)2

—|n(1+f)——ZPk 2"J'111+—ZQk sin 2k+1n. @31)
Here,
=L in2- 2 cos™F a1 32)
2 N
and
2k+1
f-cos N T
= n——_ .
Q= arcta o K+ 1 33
N
The solution of the equation
df —1—-fN
poie 1-f (39

is analogous to the previous case and will not be given here (ség ref.

It is obvious from these examples that there is a rather broad class of fufieizh
related potential¥ given by Egs 7) and @) which can yield analytic solutions. Som
special cases have been discussed above. Now, we discuss the solution of the

value problem ).

EIGENVALUE PROBLEM

Henceforth, we assume that the potential equals

2M

V(¥ = VI

i=0

Vou>0, M=1,2, ..., 85

where the functiorfi(x) is the solution of the equation

df(x)

We assume that the coefficients, ...,

VZM’ fo, ey

Z i [N (36)

fu+1 @and the functiori(x) necessary

for the definition of the potential(x) are given. All the coefficienty; andf, and the
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function f(x) are assumed to be real. The wave function is assumed in the form
finite linear combination

p=> cau @7

i=0

where

Wi =9 glx) - 39

Further we assume that the functigx) obeys the equation

M
) = gy g O 39
i=0

whereg,, ... gy are real coefficients. This equation yields

M
99 = exp[Fgox =3 g [ 09" o] @0)
i=1

To find the solution of the Schrodinger equatidh i€ is necessary to determine tt
coefficientsg, andc; and the energi for which is the eigenvalue probler®) (obeyed.
For our assumptions, the matr&) quals

M+1 M+1

M = =MM =13 i fijuo+ MY (2 Gijuy =i fijud) +
j=0 =0

M+1

+Z(jfi—j+1gj_gjgi—j)+vi , =2, M, @1
i=0

where the terms in the summations have the form of discrete convolutions. Hel
assume thag; = 0 fori < 0 andi > M. Depending on the values of the coefficiefats
andg; many terms in this equation equal zero.

Because of the form of these summations, the coefficigarslg; contribute to two
lower off-diagonals and toN upper off-diagonals oh containingV, ..., Vou. This
structure ofh makes possible to reduce the infinite order probléma a finite order
one
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> chj=Eq, j=0,...n, @2
i=0

if some additional conditions are satisfied. If these conditions are obeyed, the ¢
value problem4?2) can be solved for smatlanalytically. For large, it can be solved
numerically. Following ref, solutions in the latter case can be denoted as quasi-e

GROUND STATE

In this section, we perform general discussion of the ground state energy and
function b= 0 in Eq. 42)).
Forn =0, we can put; = §;. Then, the problemg} has the x 2M form

hg=Ed; , 1=0,....,2M . @3
The wave function equals

M
Y =g = exp(-gox - 3 g [f(x)' ox) . @4
i=1

Since the coefficientg; and the functiorf are real this function has no nodes. The|
fore, if the functionp is quadratically integrable it gives the ground state wave func
with the energyE = hy,.

Because of the form of the matiix this problem has a non-trivial solutionhj; =
0,i=1, .. Mor

M+1 M+1
Zgjgi—j_iji—jﬂgj:Vi , 1=1,..., M . 45)
j=0 j=1
Again, we assume here tlgqt= 0 fori < 0 andi > M. The corresponding energy equa
E=hp=Vo+f0, -5 - (49)

In more detail, Eq.45) can be written as

2000 - f1 01 -2 9,=V, @n
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i+1

[
Zgjgi—j_zjfi—jﬂgj:vi , 1=2,...,M-1, @9
j=0 =1

O — Mfyas Oy = Vo - @9

It is obvious that this system of equations can be solved recurrently starting fro
last equation49).
“Quadratic” potentials M = 1 First we discuss the “quadratic” potentials

V=V +V, f+V,f2 , V,>0 . 60)

These potentials include the examples discussed in section Standard Appro
special cases. For “quadratic” potentials, only the coefficgnis, fo, f1, T, Vo, Vo, andV,
can be different from zero.

The functionf(x) obeys the equation

dffdx =fy + f,f +£,f2 . (61)
For generaf,, f, andf,, this equation has the solution in the form
f(x) = [atan(ax2) - f,]/(2f,) , (62

wherea = (4f of, — f2)Y/2.
In a special casg = f,—f;, we get from Eq.51)

f¥) = (o + /(2 +8) >3

whereg = exp [(Z; + f1)X].
The wave functionp has the form

W(x) =g(¥) = exp(-gox — gy ) &) (64
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The coefficientsy, follow from Eqs 47) and 49)
g =22 (54 +V,) " (59
and
9 =f/2+Vi/(2g) . (56)
The energy46) can be written in the form
E=Vo+Vi+Vo— (g + 90>+ (fo + T +)g; - 67)

We see that the calculation of the functigx) and the energ¥ for the “quadratic”
potentials is straightforward. No potential constraints have to be introduced. Beca
the £ sign in Eq. $5) there are two possible sets of the coefficiggtsOnly those
leading to quadratically integrable wave functions are of interest.

Examples of the solutions for the ground state of the “quadratic” potentials c
found in the literatur® 1115

“Quartic” potentials M = 2 Now, we discuss the “quartic” potentials

V=Vy+V, f+V,f2+V,f3+V,f4 | V,>0 . 68)

For “guartic” potentials, only the coefficientg, ..., 9,, fo, ...,fzandV,, ..., V,can be
different from zero. The functiof{x) obeys the equation

dffdx =fy +f f+f,f2+f,f3 . (59)
The wave functionp has the form
2
P =g = exp(-gox - 3 g [f(x)' ox) . 60)
i=1

The coefficientsy, follow from Eqs é7)—(49)
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g, =fa £ (F5+V,)Y2 61
01 = (2f,9, + V3)/(29, — f5) (62

and
0o = (2f10, + .0 — 0 + Vo)/(20,) - 63

One potential constraint equals

Vi =-2g, =10, + 2009, - 64

The energy46) can be written in the form

4 2 3 2
E=Z\4—%gﬁ+_ IR (65
i=0 =0 i=0 j=1

Similarly to the “quadratic” potentials, the calculation of the functipf) and energy
E for the “quartic” potentials with one potential constraint for the coefficignis
straightforward.

We note that the boundary conditions for the wave funcBGhqannot be obeyed ir
all cases. This is for example the case of the quartic oscillatonwtix*, where the
wave function (60) contains the term ex,(¢/3) which diverges fok — —w orx — o
(ref.29). However, the boundary conditions can be obeyed if the poteB8atiépend-
ing on k| instead ok is taker™.

“Sextic” and higher order potentials M >. First we discuss the sextic potentials
the form

6
V=Y Vit V>0 . 66)
i=0

For “sextic” potentials, only the coefficiengs, ..., g; andf,, ...,f, can be different from
zero. The functiori(x) obeys the equation
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4
difx = £ . ©67)

i=0

The wave functionp has the form

3
W) =g() = exp(-gox— Y g [f) o) . 69)
i=1

The coefficientsy, follow from Eqs é7)—(49)

gs = 36,72 £ [(31,/2)2+ V22 |, 69)
0, = (3305 + Ve)/(20; — 2, (70
01 = (3,03 + 26,0, — g5 + V,)/(293 - 1) (71)
and
o = (3105 + 2,9, + f39; — 20,0, + V3)/(20;) - (72

The first potential constraint is the same as for the “quartic” poten@disThe second
one reads

V, = =3f03 — 2610, — f,0; + 2000, + 0F - 73

The energy46) can be written in the form

6 3 4 3
E:ZVi‘%gig*' iyig . 74
i=0 = i=0 =1

If the function 68) is quadratically integrable it describes the ground state wave f
tion with the energy74).
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We note that, in constrast to the quartic anharmonic oscillator, the ground state
function 68) of the sextic anharmonic oscillator wkh= x8 contains the term exp gzx*/4)
which makes possible to obey the boundary conditfoima, .., W(x) - 0 if g3> 0.

Results for the higher order oscillators are analogous to those derived above a
not be given here. We can see that introdudihg- 1 potential constraints for the
potential coefficientd/;, ..., Vy_; the functiong(x) and energye can be easily investi-
gated for an arbitrary potential given by Eg5)(

We note that the boundary conditions can be obeyed for all anharmonic oscil
with V = x?, where M =4n+ 2,n=1,2,.... For ® = 4n, the boundary conditions cal
be obeyed only ify is used in the potential insteadxof

CONCLUSIONS

In this paper, we have shown that there are two generalizations of some well-k
potentials for which is the Schrodinger equation analytically solvable. The star
approaches are based on the poteMial V, + V, f(x) + V, f(x)?, wheref(x) is a con-
veniently chosen function. The first generalization uses the same functions as in
ard approaches, however, the potential includes higher order terms in the padétic
The second generalization is based on more general funfgidpndich must obey Eq36).
It appears that the analytical solution is possible onl # 1 potential constraints or
the potential coefficient¥, are introduced. If the “quadratic” potentids= V,+ V; f(X) +
V, f(x)? are considered, no additional constraints have to be introduced. In this |
we discussed the ground state energies and wave functions. Excited states will
cussed elsewhere.

Summarizing, we have shown that some well-known potentials for which is
Schrodinger equation analytically solvable can be generalized in such a way the
least for the ground state and a few low lying excited states — the analytical solut
still possible.

This work was supported by the Grant Agency of the Czech Republic (grant No. 202/97/1016)
the Grant Agency of the Charles University (grant No. 155/96).
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